Electrochemical Detection of Heavy Metal Ions Based on Nanocomposite Materials

Author:

Shirsat Mahendra D.12,Hianik Tibor1ORCID

Affiliation:

1. Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava, Slovakia

2. RUSA Centre for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431001, India

Abstract

Heavy metal ions (HMIs) have acute toxic effects on health and are dangerous for human existence and the ecosystem. Therefore, their sensitive and selective detection is of great importance. In recent years, various nanocomposite materials have been used by researchers for the detection of HMIs by using various modalities of electrochemical techniques. This review summarizes the recent advances in developing electrochemical sensors based on numerous nanocomposite materials for detecting HMIs. Nanocomposite materials, such as metal–organic frameworks (MOFs), organic conducting polymer (OCPs), carbon nanotubes (CNTs), graphene oxide (GO), graphene/reduced graphene oxide (rGO), graphitic carbon nitride, metal oxide, chitosan, MXenes, metal nanoparticle-based nanocomposites, etc., have been explored by various researchers to improve the sensing properties of electrochemical sensors. This review emphasizes nanocomposite materials’ synthesis and characterization techniques, modalities for HMI detection using electrochemical techniques, and electrochemical sensors. Moreover, this review highlights the development of portable biosensors for detecting HMIs in real-world scenarios, such as environmental monitoring, food safety, and clinical diagnosis. This review also demonstrates the importance of electrochemical sensors based on nanocomposite materials as a reliable, sensitive, and selective tool for detecting HMIs.

Funder

Marie Skłodowska-Curie

Scientific Grant Agency VEGA

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3