An Explorative Evaluation on the Influence of Filler Content of Polyetheretherketone (PEEK) on Adhesive Bond to Different Luting Resin Cements

Author:

Dederichs Marco1ORCID,Lackner Oliver1,Kuepper Harald1,Decker Mike1,Viebranz Stephanie1ORCID,Hennig Christoph-Ludwig2,Guentsch Arndt3ORCID,Kuepper Christine1

Affiliation:

1. Policlinic of Prosthetic Dentistry and Material Science, Centre for Dental Medicine, Jena University Hospital, D-07743 Jena, Germany

2. Department of Orthodontics, Center for Dental Medicine, Jena University Hospital, D-07743 Jena, Germany

3. Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA

Abstract

Polyetheretherketone (PEEK) is considered one of the most innovative prosthetic materials of the last few decades. Its chemically inert behavior and high biocompatibility make it a promising material in many areas of dentistry. The aim of this study was to test whether PEEK with different TiO2 filler contents achieves comparable bond strength values when using different resin cements. N = 70 PEEK samples each with different TiO2 filler content (20 wt.% TiO2 vs. 5 wt.% TiO2 vs. no filler as a control group) were divided into seven groups and cemented with various conventional (ResiCem, RelyX Ultimate, Variolink Esthetic DC) and self-adhesive resin cements (RelyXUnicem 2, Bifix SE, Panavia SA Cement Plus, SpeedCem). The shear strength of the bond was assessed after 24 h and after 25,000 thermal loading cycles. Mann-Whitney U and Wilcoxon tests were used for statistical analysis (significance level: α = 0.05). PEEK without filler showed the highest mean shear strength (24.26 MPa using RelyX Ultimate), then high-filled PEEK (22.90 MPa using ResiCem) and low-filled PEEK (21.76 MPa using RelyX Ultimate). Conventional resin cements generally achieved slightly higher adhesive strengths than self-adhesive resin cements. It appears that the filler content does not affects the adhesive bond strengths.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3