Trimethoxy Silyl End-Capped Hyperbranched Polyglycidol/Polycaprolactone Particle Gels for Cell Delivery and Tissue Repair: Mechanical Properties, Biocompatibility, and Biodegradability Studies

Author:

González-Chomón Clara1,Garamus Vasil M.2ORCID,Hoyland Judith3,Halacheva Silvia S.4ORCID

Affiliation:

1. Institute for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB, UK

2. Helmholtz-Zentrum Hereon, Max-Planck-Str., 21502 Geesthacht, Germany

3. School of Biological Sciences, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK

4. Faculty of Medicine and Health Sciences, The University of Buckingham, Crewe Campus, Crewe Green Road, Crewe, Cheshire CW1 5DU, UK

Abstract

This study focuses on the development of new biocompatible and biodegradable particle gel scaffolds based on PCL-HBPG/1SiHBPG triblock copolymers composed of a polycaprolactone (PCL) core and two outer blocks of trimethoxysilyl end-capped hyperbranched polyglycidol (HBPG/1SiHBPG) that have the potential to be used in soft tissue regeneration. The relationship between the gel’s composition, structure, mechanical properties, and performance has been investigated for the first time and the copolymer design parameters have been optimized. The particle gel scaffolds were formed from the concentrated dispersions of the most hydrophobic PCL-45HBPG/1SiHBPG at low temperatures, and were the result of the numerous hydrogen bonds formed from the HBPG/1SiHBPG moieties as well as the formation of siloxane crosslinks (i.e., Si–O–Si bonds). These gels were formed in the physiological temperature range. Gels with a mechanical strength that gradually increases were formed from the physically crosslinked PCL-45HBPG/1SiHBPG particles effectively and safely, in the absence of UV radiation. They feature high elasticity and undergo enzyme-triggered disassembly. The gels are biocompatible and have the potential to invoke cell attachment and differentiation in the absence of exogenous biological stimuli. A successful outcome of this study will be the prospect of a new approach for tissue regeneration that is currently not available.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3