Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy

Author:

Abbas Aqeel1ORCID,Wang Ting-Yi1,Lin Hsin-Chih1

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract

Aluminum alloys are widely used in a variety of industries nowadays for their high strength-to-weight ratio, good formability, low density, and recyclability. However, their poor corrosion and wear resistance properties restrict their applications. This study investigated the effects of electrical parameters and electrolyte compositions on the microstructures of micro-arc oxidation (MAO) film on a 7075 Al alloy substrate. The morphology, microstructure, and compositions of the MAO coatings were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), and an electron probe micro-analyzer (EPMA). Furthermore, measurements of microhardness, corrosion resistance, and wear resistance were also conducted. The cathodic current and duty ratio are proportional to film thickness, which consequently improves the wear and corrosion resistance. The microstructural observations of the aluminate-based coatings revealed that increasing cathodic current reduces the pancake-like structures, and a lot of small pores appear on the top of the coatings, which makes the surface smoother. Moreover, the aluminate-based coatings are mainly composed of α-Al2O3 and γ-Al2O3, while the silicate-based coatings mainly consist of γ-Al2O3 and a small amount of α-Al2O3 phase. Due to the phase compositions, the microhardness of the aluminate-based coatings can reach 1300~1500 HV and exhibit better wear resistance than silicate-based coatings.

Funder

Ministry of Science and Technology (National Science Council), Republic of China

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3