Additive Manufacturing of Geopolymers Modified with Microalgal Biomass Biofiller from Wastewater Treatment Plants

Author:

Agnoli EmanueleORCID,Ciapponi Riccardo,Levi Marinella,Turri Stefano

Abstract

This paper deals with the additive manufacturing of metakaolin-based geopolymers and with the use of microalgal biomass from wastewater treatment plants as biofiller in this kind of cementitious material. The study was developed following the evolution stages of the material, which was prepared and printed as a soft paste and then hardened thanks to an inorganic polymerization reaction (geopolymerization). Thus, the characterization techniques adopted encompassed rheometry, mechanical tests performed on the hardened material, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Microalgal biomass addition, evaluated in this study at 1, 3 and 5 php with respect to the powder weight, affected both the properties of the fresh and of the hardened material. Regarding the former aspect, biomass reduced the yield stress of the pastes, improving the ease of the extrusion process, but potentially worsening the ability to build structures in height. When hardened, geopolymers containing microalgae showed mechanical properties comparable to the unfilled material and a microstructure characterized by smaller pores. Finally, a printing test was successfully performed with a larger printer to assess the feasibility of producing large-scale structures. Taking into account these results, this study demonstrates the possibility of using microalgal biomass as biofiller in geopolymers for additive manufacturing.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science

Reference40 articles.

1. 3-D printing: The new industrial revolution

2. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing;Gibson,2015

3. http://www.cbpp.uaa.alaska.edu/afef/Additive%20MFG%20.pdf

4. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges

5. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3