Author:
Bao Li,Chen Jingqi,Li Qi,Gu Yu,Wu Jian,Liu Weijie
Abstract
Localized induction heating with one magnetizer was experimentally analyzed in order to investigate the altering effect of the magnetizer on the magnetic field. A 22MnB5 blank for tailored property was locally heated to produce the parts of a car body in white, such as the B-pillars. A lower-temperature region with a temperature in the two-phase zone and a full-austenitic high-temperature region were formed on the steel blank after 30 s. After water-quenching, the mixture microstructure (F + M) and 100% fine-grained lath martensite were obtained from the lower- and high-temperature regions, respectively. Moreover, the ultimate tensile stress (UTS) of the parts from the lower- and high-temperature regions was 977 and 1698 MPa, respectively, whereas the total elongations were 17.5% and 14.5%, respectively. Compared with the parts obtained by conventional furnace heating–water quenching (UTS: 1554 MPa, total elongation: 12%), the as-quenched phase developed a tensile strength over 100 MPa greater and a higher ductility. Thus, the new heating process can be a good foundation in subsequent experiments to arbitrarily tailor the designable low-strength zone with a higher ductility by using magnetizers.
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献