Abstract
Chiral metamaterials with asymmetric transmission can be applied as polarization-controlled devices. Here, a Mie-based dielectric metamaterial with a spacer exhibiting asymmetric transmission of linearly polarized waves at microwave frequencies was designed and demonstrated numerically. The unidirectional characteristic is attributed to the chirality of the metamolecule and the mutual excitation of the Mie resonances. Field distributions are simulated to investigate the underlying physical mechanism. Fano-type resonances emerge near the Mie resonances of the constituents and come from the destructive interference inside the structure. The near-field coupling further contributes to the asymmetric transmission. The influences of the lattice constant and the spacer thickness on the asymmetric characteristics were also analyzed by parameter sweeps. The proposed Mie-based metamaterial is of a simple structure, and it has the potential for applications in dielectric metadevices, such as high-performance polarization rotators.
Funder
National Natural Science Foundation of China
Basic Science Center Project of NSFC
Subject
General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献