Author:
Lu Yuzhen,Qiu Xiaoming,Ruan Ye,Luo Cui,Xing Fei
Abstract
In this paper, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD) were used to comprehensively analyze the microstructure and brazing performance of a CuAgTi filler metal with braze tungsten heavy alloys. The association of microstructure, wettability and shear strength of brazing joints was also investigated. With the addition of Ti, the Ti3Cu4 phase appeared in the microstructure of filler metal. Ti is active element that promotes the reaction of filler with tungsten. Therefore, the Ti element is enriched around tungsten and forms a Ti2Cu layer at the interface, leaving a Cu-rich/Ti-poor area on the side. Remaining Ti and Cu elements form the acicular Ti3Cu4 structure at the center of the brazing zone. The wettability of filler metal is improved, and the spreading area is increased from 120.3 mm2 to 320.9 mm2 with the addition of 10 wt.% Ti. The shear strength of joint reaches the highest level at a Ti content of 2.5 wt.%, the highest shear strength is 245.6 MPa at room temperature and 142.2 MPa at 400 °C.
Funder
Jilin Province Science and Technology Development Plan
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献