Author:
Lv Jian,Zhu Miaomiao,Pan Weijie,Liu Xiang
Abstract
To create alternative complex patterns, a novel design method is introduced in this study based on the error back propagation (BP) neural network user cognitive surrogate model of an interactive genetic algorithm with individual fuzzy interval fitness (IGA-BPFIF). First, the quantitative rules of aesthetic evaluation and the user’s hesitation are used to construct the Gaussian blur tool to form the individual’s fuzzy interval fitness. Then, the user’s cognitive surrogate model based on the BP neural network is constructed, and a new fitness estimation strategy is presented. By measuring the mean squared error, the surrogate model is well managed during the evolution of the population. According to the users’ demands and preferences, the features are extracted for the interactive evolutionary computation. The experiments show that IGA-BPFIF can effectively design innovative patterns matching users’ preferences and can contribute to the heritage of traditional national patterns.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献