Interactive Cutting of Thin Deformable Objects

Author:

Weng BinORCID,Sourin Alexei

Abstract

Simulation of cutting is essential for many applications such as virtual surgical training. Most existing methods use the same triangle mesh for both visualization and collision handling, although the requirements for them in the interactive simulation are different. We introduce visual-collision binding between high-resolution visual meshes and low-resolution collision meshes, and thus extend the spatially reduced framework to support cutting. There are two phases in our framework: pre-processing and simulation. In the pre-processing phase, the fvisual-collision binding is built based on the computation of geodesic paths. In the simulation phase, the cutting paths are detected on the collision triangles and then mapped to local 2D coordinates systems in which the intersections between visual mesh and the cutting paths are calculated. Both collision and visual meshes are then re-meshed locally. The visual-collision binding is updated after cutting, based on which the collision-simulation and visual-simulation embedding are updated locally. Experimental results show that our cutting method is an efficient and flexible tool for interactive cutting simulation.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3