Research on Strength Prediction Model of Sand-like Material Based on Nuclear Magnetic Resonance and Fractal Theory

Author:

Deng Hongwei,Tian Guanglin,Yu Songtao,Jiang Zhen,Zhong Zhiming,Zhang Yanan

Abstract

Micro-pore structure has a decisive effect on the physical and mechanical properties of porous materials. To further improve the composition of rock-like materials, the internal relationship between microscopic characteristics (porosity, pore size distribution) and macroscopic mechanical properties of materials needs to be studied. This study selects portland cement, quartz sand, silica fume, and water-reducing agent as raw materials to simulate sandstone. Based on the Nuclear magnetic resonance (NMR) theory and fractal theory, the study explores the internal relationship between pore structure and mechanical properties of sandstone-like materials, building a compressive strength prediction model by adopting the proportion of macropores and the dimension of macropore pore size as dependent variables. Test results show that internal pores of the material are mainly macropores, and micropores account for the least. The aperture fractal dimension, the correlation coefficient of mesopores and macropores are quite different from those of micropores. Fractal characteristics of mesopores and macropores are obvious. The macropore pore volume ratio has a good linear correlation with fractal dimension and strength, and it has a higher correlation coefficient with pore volume ratio, pore fractal dimension and other variable factors. The compressive strength increases with the growth of pore size fractal dimension, but decreases with the growth of macropore pore volume ratio. The strength prediction model has a high correlation coefficient, credibility and prediction accuracy, and the predicted strength is basically close to the measured strength.

Funder

National Natural Science Foundation Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3