Comparison of a Response Surface Method and Artificial Neural Network in Predicting the Aerodynamic Performance of a Wind Turbine Airfoil and Its Optimization

Author:

Oh Sahuck

Abstract

To find the optimal design for an engineering object, thousands of (or even more) simulations should be implemented to obtain the outcome data for the variously designed objects. However, repeating simulations this many times is impossible because a typical simulation is a computationally expensive task. Instead of conducting all the required simulations, a more efficient way is predicting the outcome from the approximation model, called the surrogate model. The response surface method (RSM) with polynomials and artificial neural network (ANN) are the most prominent methods in constructing a surrogate model in the engineering fields. In this study, the prediction accuracy of the surrogate models computed by using an RSM and ANN is compared with several datasets showing different complexities. This comparison is investigated by constructing the surrogate models in predicting aerodynamic performance of a wind turbine airfoil. In the current paper, it is verified that the prediction accuracy of the ANN-computed surrogate model is higher than the RSM-computed one when the datasets have a high level of complexity, but the opposite phenomenon is observed if the datasets have a low level of complexity. When the surrogate models with different accuracies are used to enhance the performance of a wind turbine airfoil, the surrogate model with a high level of accuracy produces the optimal design, showing a high performance improvement. The current study is expected to give guidance on how to properly choose between an RSM and ANN to construct a highly accurate surrogate model that can help in finding a design with a high performance improvement during the optimization process.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3