Fault Diagnosis of a Reciprocating Compressor Air Valve Based on Deep Learning

Author:

Xiao Shungen,Nie Ang,Zhang ZexiongORCID,Liu Shulin,Song Mengmeng,Zhang Hongli

Abstract

With the development of machine learning in recent years, the application of machine learning to machine fault diagnosis has become increasingly popular. Applying traditional feature extraction methods for complex systems will weaken the characterization capacity of features, which are not conducive to subsequent classification work. A reciprocating compressor is a complex system. In order to improve the fault diagnosis accuracy of complex systems, this paper does not use traditional fault diagnosis methods and applies deep convolutional neural networks (CNNs) to process this nonlinear and non-stationary fault signal. The valve fault data is obtained from the reciprocating compressor test bench of the Daqing Natural Gas Company. Firstly, the single-channel vibration signal is collected on the reciprocating compressor and the one-dimensional CNN (1-D CNN) is used for fault diagnosis and compared with the traditional model to verify the effectiveness of the 1-D CNN. Next, the collected eight channels signals (three channels of vibration signals, four channels of pressure signals, one channel key phase signal) are applied by 1-D CNN and 2-D CNN for fault diagnosis to verify the CNN that it is still suitable for multi-channel signal processing. Finally, further study on the influence of the input of different channel signal combinations on the model diagnosis accuracy is carried out. Experiments show that the seven-channel signal (three-channel vibration signal, four-channel pressure signal) with the key phase signal removed has the highest diagnostic accuracy in the 2-D CNN. Therefore, proper deletion of useless channels can not only speed up network operations but also improve diagnosis accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3