Abstract
We present a design of a compact transmission water-window microscope based on the Z-pinching capillary discharge nitrogen plasma source. The microscope operates at wavelength of 2.88 nm (430 eV), and with its table-top dimensions provides an alternative to large-scale soft X-ray (SXR) microscope systems based on synchrotrons and free-electron lasers. The emitted soft X-ray radiation is filtered by a titanium foil and focused by an ellipsoidal condenser mirror into the sample plane. A Fresnel zone plate was used to create a transmission image of the sample onto a charge-coupled device (CCD) camera. To assess the resolution of the microscope, we imaged a standard sample-copper mesh. The spatial resolution of the microscope is 75 nm at half-pitch, calculated via a 10–90% intensity knife-edge test. The applicability of the microscope is demonstrated by the imaging of green algae-Desmodesmus communis. This paper describes the principle of capillary discharge source, design of the microscope, and experimental imaging results of Cu mesh and biological sample.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献