Surface Characteristics and Cell Adhesion Behaviors of the Anodized Biomedical Stainless Steel

Author:

Hsu Heng-Jui,Wu Chia-Yu,Huang Bai-Hung,Tsai Chi-Hsun,Saito TakashiORCID,Ou Keng-LiangORCID,Chuo Yen-Chun,Lin Kuan-Ling,Peng Pei-Wen

Abstract

In this study, an electrochemical anodizing method was applied as surface modification of the 316L biomedical stainless steel (BSS). The surface properties, microstructural characteristics, and biocompatibility responses of the anodized 316L BSS specimens were elucidated through scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, transmission electron microscopy, and in vitro cell culture assay. Analytical results revealed that the oxide layer of dichromium trioxide (Cr2O3) was formed on the modified 316L BSS specimens after the different anodization modifications. Moreover, a dual porous (micro/nanoporous) topography can also be discovered on the surface of the modified 316L BSS specimens. The microstructure of the anodized oxide layer was composed of amorphous austenite phase and nano-Cr2O3. Furthermore, in vitro cell culture assay also demonstrated that the osteoblast-like cells (MG-63) on the anodized 316L BSS specimens were completely adhered and covered as compared with the unmodified 316L BSS specimen. As a result, the anodized 316L BSS with a dual porous (micro/nanoporous) oxide layer has great potential to induce cell adhesion and promote bone formation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3