Continuously Wavelength-Tunable First-Order Narrowband Fiber Comb Filter Using Composite Combination of Wave Retarders

Author:

Jung Jaehoon,Lee Yong WookORCID

Abstract

Here, by harnessing a composite combination of wave retarders, we propose and experimentally demonstrate a first-order narrowband fiber comb filter capable of continuously tuning its wavelength, of which the filter structure is on the fundamental basis of a polarization–diversity loop structure. The demonstrated comb filter consists of a polarizing beam splitter (PBS), two high birefringence fiber (HBF) segments of the same length, an ordered wave retarder combination (WRC) of a quarter-wave retarder (QWR) and a half-wave retarder (HWR) before the first HBF segment, and an ordered WRC of an HWR and a QWR before the second HBF segment. The second HBF segment is butt-coupled to one port of the PBS so that its principal axis should be 22.5° away from the horizontal axis of the PBS. Taking the filter transmittance obtained by Jones calculus into consideration, we found the azimuth orientation angle (AOA) sets of the four wave retarders, which could allow extra phase shifts (ψ’s) ranging from 0° to 360° to be induced in the narrowband transmittance function. From filter transmission spectra calculated according to the AOA sets found above, it is confirmed that the first-order narrowband comb spectrum can be continuously tuned by properly controlling the AOA’s, clearly indicating the continuous wavelength tunability based on a composite combination of ordered wave retarders. This theoretical prediction was verified by actually constructing the proposed filter. Then, it is concluded that our filter employing the composite combination of wave retarders can be continuously frequency-tuned by properly controlling the AOA’s of the wave retarders.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3