Group Pile Effect on Temperature Distributions inside Energy Storage Pile Foundations

Author:

Sailauova DilnuraORCID,Mamesh ZhamilyaORCID,Zhang DichuanORCID,Lee DeuckhangORCID,Shon Chang-SeonORCID,Kim Jong R.ORCID

Abstract

Energy storage pile foundations are being developed for storing renewable energy by utilizing compressed air energy storage technology. Previous studies on isolated piles indicate that compressed air can result in pressure and temperature fluctuations in the pile, which can further affect safety of the pile foundation. Meanwhile, the temperature changes and distributions for the pile and surrounding soil also are influenced by adjacent piles in typical group pile constructions. Therefore, dynamic thermal transfer simulations were conducted in this paper to investigate the temperature changes and distributions in the concrete pile and surrounding soil for group pile construction. The main parameter in this study is the spacing of the piles. The analysis results show that the group pile effect significantly increases the temperature up to more than 100 °C depending on the location and changes its distribution in both concrete and soil due to the heat transferred from the adjacent piles. The final stabilized temperature can be as high as 120 °C in the concrete pile and 110 °C in the soil after numerous loading cycles, which is about 4 times higher than typical thermo-active energy pile applications. Thus, it is important to include the group pile effect for design and analysis of the energy storage pile foundation.

Funder

Nazarbayev University

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Electricity storage for intermittent renewable sources

2. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology;Tulebekova,2017

3. Nonlinear responses of energy storage pile foundations with fiber reinforced concrete;Tulebekova;Struct. Eng. Mech.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3