Abstract
Because the Internet of things (IoT) and fog computing are prevalent, an efficient resource consolidation scheme in nanoscale computing environments is urgently needed. In nanoscale environments, a great many small devices collaborate to achieve a predefined goal. The representative case would be the edge cloud, where small computing servers are deployed close to the cloud users to enhance the responsiveness and reduce turnaround time. In this paper, we propose an intelligent and cost-efficient resource consolidation algorithm in nanoscale computing environments. The proposed algorithm is designed to predict nanoscale devices’ scheduling decisions and perform the resource consolidation that reconfigures cloud resources dynamically when needed without interrupting and disconnecting the cloud user. Because of the large number of nanoscale devices in the system, we developed an efficient resource consolidation algorithm in terms of complexity and employed the hidden Markov model to predict the devices’ scheduling decision. The performance evaluation shows that our resource consolidation algorithm is effective for predicting the devices’ scheduling decisions and efficiency in terms of overhead cost and complexity.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献