Deterministic and Explicit: A Quantitative Characterization of the Matrix and Collagen Influence on the Stiffening of Peripheral Nerves Under Stretch

Author:

Sergi Pier NicolaORCID

Abstract

The structural organization of peripheral nerves enables them to adapt to different body postures and movements by varying their stiffness. Indeed, they could become either compliant or stiff in response to the amount of external solicitation. In this work, the global response of nerves to axial stretch was deterministically derived from the interplay between the main structural constituents of the nerve connective tissue. In particular, a theoretical framework was provided to explicitly decouple the action of the ground matrix and the contribution of the collagen fibrils on the macroscopic stiffening of stretched nerves. To test the overall suitability of this approach, as a matter of principle, the change of the shape of relevant curves was investigated for changes of numerical parameters, while a further sensitivity study was performed to better understand the dependence on them. In addition, dimensionless stress and curvature were used to quantitatively account for both the matrix and the fibril actions. Finally, the proposed framework was used to investigate the stiffening phenomenon in different nerve specimens. More specifically, the proposed approach was able to explicitly and deterministically model the nerve stiffening of porcine peroneal and canine vagus nerves, closely reproducing (R2>0.997) the experimental data.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. THE INTRANEURAL TOPOGRAPHY OF THE RADIAL, MEDIAN AND ULNAR NERVES

2. Structure and Biomechanics of Peripheral Nerves: Nerve Responses to Physical Stresses and Implications for Physical Therapist Practice

3. Neurobiology of Peripheral Nerve Regeneration

4. The connective tissue of peripheral nerve: An electron microscope study;Thomas;J. Anat.,1963

5. An Electron Microscope Study of the Connective Tissues of Human Peripheral Nerve;Gamble;J. Anat.,1964

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3