Robust Path Tracking Control for Autonomous Vehicle Based on a Novel Fault Tolerant Adaptive Model Predictive Control Algorithm

Author:

Geng KekeORCID,Liu Shuaipeng

Abstract

Autonomous vehicles are expected to completely change the development model of the transportation industry and bring great convenience to our lives. Autonomous vehicles need to constantly obtain the motion status information with on-board sensors in order to formulate reasonable motion control strategies. Therefore, abnormal sensor readings or vehicle sensor failures can cause devastating consequences and can lead to fatal vehicle accidents. Hence, research on the fault tolerant control method is critical for autonomous vehicles. In this paper, we develop a robust fault tolerant path tracking control algorithm through combining the adaptive model predictive control algorithm for lateral path tracking control, improved weight assignment method for multi-sensor data fusion and fault isolation, and novel federal Kalman filtering approach with two states chi-square detector and residual chi-square detector for detection and identification of sensor fault in autonomous vehicles. Our numerical simulation and experiment demonstrate that the developed approach can detect fault signals and identify their sources with high accuracy and sensitivity. In the double line change path tracking control experiment, when the sensors failure occurs, the proposed method shows better robustness and effectiveness than the traditional methods. It is foreseeable that this research will contribute to the development of safer and more intelligent autonomous driving system, which in turn will promote the industrial development of intelligent transportation system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3