Bounded-Error-Pruned Sensor Data Compression for Energy-Efficient IoT of Environmental Intelligence

Author:

Chang Ray-I.,Chu Yu-Hsien,Wei Lien-Chen,Wang Chia-Hui

Abstract

Emerging IoT (Internet of Things) technologies have enjoyed tremendous success in a variety of applications. Since sensors in IoT consume a lot of energy to transmit their data, data compression used to prolong system lifetime has become a hot research topic. In many real-world applications, such as IEI (IoT of environmental intelligence), the required sensing data usually have limited error tolerance according to the QoS2 (quality of sensor service) or QoD (quality of decision-making) required. However, the bounded-error-pruned sensor data can achieve higher data correlation for better compression without jeopardizing QoS2/QoD. Moreover, the sensing data in widely spread sensors usually have strong temporal and spatial correlations. We thus propose a BESDC (bounded-error-pruned sensor data compression) scheme to achieve better leverage between the bounded error and compression ratio for sensor data. In this paper, our experiments on a sensor network of two-tier tree architecture consider four different environmental datasets including PM 2.5, CO, temperature and seismic wave with different scales of bounded errors. With the bounded errors required by the given IEI applications, our BESDC can reduce the total size of data transmission to minimize both energy consumption in sensor-tier devices and storage of fog-tier servers. The experimental results demonstrate that our BESDC can reduce transmission data by over 55% and save 50% energy consumption when assigning 1% of error tolerance within QoS2/QoD requirement. To the best of our knowledge, the proposed BESDC scheme can help other energy-efficient IoT schemes applying network topologies and routing protocols to further enhance energy-efficient IoT services.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3