Numerical Study of the Toughness of Complex Metal Matrix Composite Topologies

Author:

Lemesle JulieORCID,Hubert Cedric,Bigerelle Maxence

Abstract

Fracture toughness tests (compact tension) of a dual material composed of a structured Metal Matrix Composite (MMC) (martensitic steel and titanium carbides, named MS-TiC) surrounded by martensitic steel (MS) are simulated with a Discrete Elements Model (DEM) developed with the GranOO Workbench. The MMC structures are micro-lattices such as gyroid, octet-truss and Face and Body-Centered Cubic with Z-truss (FBCCZ). The volume fraction of these MMC inserts and their cell size are fixed, the influence of the cell orientation is studied. The aim of the study is to determine the configuration of topology (shape and cell orientation) which absorbs the most energy and is the most crack resistant. From experimental tests, the Young’s moduli and the failure stresses of the MMC material and the metal are estimated, and thanks to beam network discretization, a local stiffness and a failure criterion are evaluated to finally obtain a crack propagation path. To verify the suitability of the DEM model, a Compact Tension (CT) experimental test on MMC specimens is performed and a stress intensity factor is computed. A good agreement with an error less than 10% is obtained between experimental and simulated KIc with values respectively equal to 35 and 37 MPam. From DEM simulations based on the CT tests, the FBCCZ cell absorbs the most energy at the crack propagation compared to other structures and the steel. The crack propagation length depends on the shape of the topology. The originality of the study lies in the modeling, with granular properties using DEM, of the mechanical and elastic fracture behavior of these topological structures classically solved by Finite Elements Method (FEM): the microscopic constitutive relations have been validated macroscopically by experimental tests on homogeneous MMC materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3