Mooring-Failure Monitoring of Submerged Floating Tunnel Using Deep Neural Network

Author:

Kwon Do-SooORCID,Jin ChungkukORCID,Kim MooHyun,Koo Weoncheol

Abstract

This paper presents a machine learning method for detecting the mooring failures of SFT (submerged floating tunnel) based on DNN (deep neural network). The floater-mooring-coupled hydro-elastic time-domain numerical simulations are conducted under various random wave excitations and failure/intact scenarios. Then, the big-data is collected at various locations of numerical motion sensors along the SFT to be used for the present DNN algorithm. In the input layer, tunnel motion-sensor signals and wave conditions are inputted while the output layer provides the probabilities of 21 failure scenarios. In the optimization stage, the numbers of hidden layers, neurons of each layer, and epochs for reliable performance are selected. Several activation functions and optimizers are also tested for the present DNN model, and Sigmoid function and Adamax are respectively adopted to enhance the classification accuracy. Moreover, a systematic sensitivity test with respect to the numbers and arrangements of sensors is performed to find the appropriate sensor combination to achieve target prediction accuracy. The technique of confusion matrix is used to represent the accuracy of the DNN algorithms for various cases, and the classification accuracy as high as 98.1% is obtained with seven sensors. The results of this study demonstrate that the DNN model can effectively monitor the mooring failures of SFTs utilizing real-time sensor signals.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3