Acoustic Identification of Turbocharger Impeller Mistuning—A New Tool for Low Emission Engine Development

Author:

Píštěk VáclavORCID,Kučera PavelORCID,Fomin OleksijORCID,Lovska Alyona,Prokop Aleš

Abstract

At present, exhaust gas turbochargers not only form the basis for the economical operation of petrol, diesel or gas engines of all power categories, but also have an irreplaceable role on reducing their emissions. In order to reduce emissions from internal combustion engines, various systems are being developed, all of which have a turbocharger as an important component. Demands on turbocharger system durability and reliability keep growing, which requires the application of increasingly advanced computational and experimental methods at the development beginning of these systems. The design of turbochargers starts with a mathematical description of their rotationally cyclic impellers. However, mistuning, i.e., a slight individual blade property deviation from the intended design parameters, leads to a disturbance of the rotational cyclic symmetry. This article deals with the effects of manufacturing-related deviations on the structural dynamic behaviour of real turbine rotors. As opposed to methods exploiting expensive scanning vibrometers for experimental modal analysis or time-consuming accurate measurement of the geometry of individual blades using 3D optical scanners. A suitable microphone and a finite element rotor wheel model are the basis of this new method. After comparing the described acoustic approach with the laser vibrometer procedure, the results seemed to be practically identical. In comparison with the laser technique the unquestionable added value of this new method is the fact that it brings a significant reduction in the financial requirements for laboratory equipment. Another important benefit is that the measuring process of bladed wheel mistuning is significantly less time-consuming.

Funder

Brno University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies

2. Über die Schwingungen von Dampfturbinen-Laufrädern;Stodola;Schweiz. Bauztg.,1914

3. The protection of steam turbine disk wheels from axial vibration;Campbell;ASME Trans.,1924

4. The Influence of Dynamical Imperfection on the Vibration of Rotating Disks

5. Effect of Mistuning on the Vibration of Turbo-Machine Blades Induced by Wakes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3