THz Radiation Measurement with HTSC Josephson Junction Detector Matched to Planar Antenna

Author:

Holdengreber EldadORCID,Glezer Moshe Aviv,Schacham Shmuel E.,Mizrahi Moshe,Vigneswaran Dhasarathan,Färber Eliyahu

Abstract

Superconducting Josephson junctions have major advantages as detectors of millimeter wave radiation. Frequency of the radiation can be easily derived from the Shapiro steps of the current-voltage characteristics. However, system performance is highly sensitive to impedance mismatch between the antenna and the junction; therefore, optimization is essential. We analyzed and implemented an improved antenna structure, in which the junction is displaced from the antenna center and placed between the ends of two matching strips. Based on theoretical analysis and advanced electromagnetic simulations, we optimized strip dimensions, which affect both the detection magnitude and the frequency of the reflection coefficient dip. Accordingly, two Au bow-tie antennas with different matching strip widths were fabricated. Superconducting Yttrium Barium Copper Oxide (YBCO) thin films were deposited exactly at the bicrystal substrate misorientation points, forming Josephson junctions at the ends of two matching strips. We found a very high correlation between the simulations and the response to Radio Frequency (RF) radiation in the range of 145–165 GHz. Experimental results agree extremely well with the design, showing best performance of both antennas around the frequency for which impedance matching was derived.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. mmWave communication enabling techniques for 5G wireless systems: A link level perspective;Bogale,2017

2. Terahertz detectors and focal plane arrays

3. Integrated, Portable, Tunable, and Coherent Terahertz Sources and Sensitive Detectors Based on Layered Superconductors

4. A review of terahertz detectors

5. Terahertz sources, detectors, and transceivers in silicon technologies;Zhuang,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3