Abstract
The patent document has different content for each paragraph, and the length of the document is also very long. Moreover, patent documents are classified hierarchically as multi-labels. Many works have employed deep neural architectures to classify the patent documents. Traditional document classification methods have not well represented the characteristics of entire patent document contents because they usually require a fixed input length. To address this issue, we propose a neural network-based document classification for patent documents by designing a novel multi-stage feature extraction network (MEXN), which comprise of paragraphs encoder and summarizer for all paragraphs. MEXN features analysis of the whole documents hierarchically and providing multi-labels outputs. Furthermore, MEXN preserves computing performance marginally increase. We demonstrate that the proposed method outperforms current state-of-the-art models in patent document classification tasks with multi-label classification experiments for USPD datasets.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献