Toward Scalable Video Analytics Using Compressed-Domain Features at the Edge

Author:

Nguyen Dien VanORCID,Choi JaehyukORCID

Abstract

Intelligent video analytics systems have come to play an essential role in many fields, including public safety, transportation safety, and many other industrial areas, such as automated tools for data extraction, and analyzing huge datasets, such as multiple live video streams transmitted from a large number of cameras. A key characteristic of such systems is that it is critical to perform real-time analytics so as to provide timely actionable alerts on various tasks, activities, and conditions. Due to the computation-intensive and bandwidth-intensive nature of these operations, however, video analytics servers may not fulfill the requirements when serving a large number of cameras simultaneously. To handle these challenges, we present an edge computing-based system that minimizes the transfer of video data from the surveillance camera feeds on a cloud video analytics server. Based on a novel approach of utilizing the information from the encoded bitstream, the edge can achieve low processing complexity of object tracking in surveillance videos and filter non-motion frames from the list of data that will be forwarded to the cloud server. To demonstrate the effectiveness of our approach, we implemented a video surveillance prototype consisting of edge devices with low computational capacity and a GPU-enabled server. The evaluation results show that our method can efficiently catch the characteristics of the frame and is compatible with the edge-to-cloud platform in terms of accuracy and delay sensitivity. The average processing time of this method is approximately 39 ms/frame with high definition resolution video, which outperforms most of the state-of-the-art methods. In addition to the scenario implementation of the proposed system, the method helps the cloud server reduce 49% of the load of the GPU, 49% that of the CPU, and 55% of the network traffic while maintaining the accuracy of video analytics event detection.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Demo: Video Analytics-Killer App for Edge Computing;Ananthanarayanan,2019

2. Video Surveillance Installed Base Report—2019https://technology.informa.com/607069/video-surveillance-installed-base-report-2019

3. Segmentation of Moving Object Using Background Subtraction Method in Complex Environments

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3