Thermodynamics of Plutonium Monocarbide from Anharmonic and Relativistic Theory

Author:

Söderlind PerORCID,Landa AlexanderORCID,Perron Aurélien,Moore Emily E.ORCID,Wu Christine

Abstract

Thermodynamics of plutonium monocarbide is studied from first-principles theory that includes relativistic electronic structure and anharmonic lattice vibrations. Density-functional theory (DFT) is expanded to include orbital-orbital coupling in addition to the relativistic spin-orbit interaction for the electronic structure and it is combined with anharmonic, temperature dependent, lattice dynamics derived from the self-consistent ab initio lattice dynamics (SCAILD) method. The obtained thermodynamics are compared to results from simpler quasi-harmonic theory and experimental data. Formation enthalpy, specific heat, and Gibbs energy calculated from the anharmonic model are validated by direct comparison with a calculation of phase diagram (CALPHAD) assessment of PuC and sub-stochiometric PuC0.896. Overall, the theory reproduces CALPHAD results and measured data for PuC rather well, but the comparison is hampered by the sub-stoichiometric nature of plutonium monocarbide. It was found that a bare theoretical approach that ignores spin-orbit and orbital-orbital coupling (orbital polarization) of the plutonium 5f electrons promotes too soft phonons and Gibbs energies that are incompatible with that of the CALPHAD assessment of the experimental data. The investigation of PuC suggests that the electronic structure is accurately described by plutonium 5f electrons as “band like” and delocalized, but correlate through spin polarization, orbital polarization, and spin-orbit coupling, in analogy to previous findings for plutonium metal.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3