Condition Monitoring System and Faults Detection for Impedance Bonds from Railway Infrastructure

Author:

Andrusca MihaiORCID,Adam Maricel,Dragomir AlinORCID,Lunca Eduard,Seeram RamakrishnaORCID,Postolache Octavian

Abstract

Nowadays, sensors and condition monitoring systems are expanding rapidly and becoming cheaper. This contributes to increasing developments in condition monitoring in railway transport infrastructure. A condition monitoring system that uses an online device and sensors to acquire electrical parameters from railway infrastructure has been developed and applied for fault detection and diagnosis of impedance bonds. The impedance bond condition is monitored in real-time using current and temperature sensors, providing early warning if predefined thresholds are exceeded in terms of currents, imbalance currents, and temperatures. The proposed method and the developed monitoring device have been validated in the railway laboratory to confirm its capability to detect defects. The acquired parameters from impedance bonds are used to extract thermal stresses and technical conditions of this equipment. Experimental results and appropriate data analysis are included in the article.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimisation Design of a Low-Frequency Eddy Current Rail Heater;Energies;2023-11-03

2. Temperature Monitoring of MV Switchgear Cabinet by Non-Intrusive Methods;2023 10th International Conference on Modern Power Systems (MPS);2023-06-21

3. Detecting Arcing Faults in Switchgear by Using Deep Learning Techniques;Applied Sciences;2023-04-05

4. Rail potential formation at AC railways under heavy hauling;2ND INTERNATIONAL CONFERENCE & EXPOSITION ON MECHANICAL, MATERIAL, AND MANUFACTURING TECHNOLOGY (ICE3MT 2022);2023

5. Monitoring and Diagnosis of Electrical Equipment by Infrared Thermography;2022 International Conference and Exposition on Electrical And Power Engineering (EPE);2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3