Influence of NOM on the Stability of Zinc Oxide Nanoparticles in Ecotoxicity Tests

Author:

Lee Byoung-cheun,Hong Gilsang,Lee Hyejin,Kim Pyeongsoon,Seo Do-Yeon,Hwang GukhwaORCID,Kim Geunbae,Kim Pilje

Abstract

Nanomaterials are known to aggregate in the presence of ions. Similarly, the aggregation of zinc oxide nanoparticles (ZnO NPs) exposed to various ions such as sodium chloride and calcium chloride in water systems increases with the ionic strength. Therefore, for accurate toxicity studies, it is necessary to conduct a test using natural organic matters (NOMs) as additional dispersants that strengthen stability with increased repulsive forces. The three types of ecotoxicity tests based on the dispersion stability test using NOM showed that the toxicities of the three test samples decreased in the presence of NOM. To determine how NOM improved dispersion and reduced toxicities, we analyzed the ionization degree of ZnO NPs with and without NOM and found that the solubility was below 2 mg/L with a negligible change over time, implying that the ionization effect was low. The absolute value of the surface charge of particles increased in the presence of NOM, resulting in increased repulsive electrostatic forces and steric hindrance, causing less aggregation and more dispersion. Additionally, although the NOM used in the test is considered an effective dispersant that does not have a toxicological effect on aquatic organisms, the presence of NOM resulted in reduced toxicities and should be further investigated to establish it as a standard test method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3