CT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning

Author:

González-Castro VíctorORCID,Cernadas EvaORCID,Huelga Emilio,Fernández-Delgado Manuel,Porto JacoboORCID,Antunez José Ramón,Souto-Bayarri Miguel

Abstract

In this work, by using descriptive techniques, the characteristics of the texture of the CT (computed tomography) image of patients with colorectal cancer were extracted and, subsequently, classified in KRAS+ or KRAS-. This was accomplished by using different classifiers, such as Support Vector Machine (SVM), Grading Boosting Machine (GBM), Neural Networks (NNET), and Random Forest (RF). Texture analysis can provide a quantitative assessment of tumour heterogeneity by analysing both the distribution and relationship between the pixels in the image. The objective of this research is to demonstrate that CT-based Radiomics can predict the presence of mutation in the KRAS gene in colorectal cancer. This is a retrospective study, with 47 patients from the University Hospital, with a confirmatory pathological analysis of KRAS mutation. The highest accuracy and kappa achieved were 83% and 64.7%, respectively, with a sensitivity of 88.9% and a specificity of 75.0%, achieved by the NNET classifier using the texture feature vectors combining wavelet transform and Haralick coefficients. The fact of being able to identify the genetic expression of a tumour without having to perform either a biopsy or a genetic test is a great advantage, because it prevents invasive procedures that involve complications and may present biases in the sample. As well, it leads towards a more personalized and effective treatment.

Funder

Xunta de Galicia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Incidencia y Mortalidad de Cáncer Colorrectal en España en la Población Entre 50 y 69 Años,2018

2. Lyon: International Agency for Research on Cancerhttp://gco.iarc.fr

3. Sitio Web de la American Cáncer Society Atlanta: Equipo de Redactores y Editores de la American Cancer Societyhttps://www.cancer.org/es/cancer/cancer-decolon-o-recto/tratamiento/terapia-dirigida.html

4. Madrid: Fundación SEOM 2019https://seom.org

5. Enfermedades Gastrointestinales y Hepáticas;Feldman,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3