Abstract
Imaging the three-dimensional movement of small organelles in living cells can provide key information for the dynamics of drug delivery and virus transmission in biomedical disciplines. To stably monitor such intracellular motion using microscope, long depth of field along optical axis and accurate three-dimensional tracking are simultaneously required. In the present work, we suggest an extended dual-focus optics microscopy system by combining a bifocal plane imaging scheme and objective lens oscillation, which enables accurate localization for a long axial range. The proposed system exploits high-resolution functionality by concatenating partial calibration result acquired each axial imaging level, maintaining the practical advantages of ratiometric method.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献