Author:
Liu Gaokai,Yang Ning,Guo Lei
Abstract
Textured surface anomaly detection is a significant task in industrial scenarios. In order to further improve the detection performance, we proposed a novel two-stage approach with an attention mechanism. Firstly, in the segmentation network, the feature extraction and anomaly attention modules are designed to capture the detail information as much as possible and focus on the anomalies, respectively. To strike dynamic balances between these two parts, an adaptive scheme where learnable parameters are gradually optimized is introduced. Subsequently, the weights of the segmentation network are frozen, and the outputs are fed into the classification network, which is trained independently in this stage. Finally, we evaluate the proposed approach on DAGM 2007 dataset which consists of diverse textured surfaces with weakly-labeled anomalies, and the experiments demonstrate that our method can achieve 100% detection rates in terms of TPR (True Positive Rate) and TNR (True Negative Rate).
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献