An Attention-Based Network for Textured Surface Anomaly Detection

Author:

Liu Gaokai,Yang Ning,Guo Lei

Abstract

Textured surface anomaly detection is a significant task in industrial scenarios. In order to further improve the detection performance, we proposed a novel two-stage approach with an attention mechanism. Firstly, in the segmentation network, the feature extraction and anomaly attention modules are designed to capture the detail information as much as possible and focus on the anomalies, respectively. To strike dynamic balances between these two parts, an adaptive scheme where learnable parameters are gradually optimized is introduced. Subsequently, the weights of the segmentation network are frozen, and the outputs are fed into the classification network, which is trained independently in this stage. Finally, we evaluate the proposed approach on DAGM 2007 dataset which consists of diverse textured surfaces with weakly-labeled anomalies, and the experiments demonstrate that our method can achieve 100% detection rates in terms of TPR (True Positive Rate) and TNR (True Negative Rate).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EANet: Enhanced Attention-based Model for Surface Defect Detection;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

2. Review of Network Anomaly Detection in the High-speed Railway Signal System Based on Artificial Intelligence;2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI);2023-05-26

3. Deep Learning for Automatic Vision-Based Recognition of Industrial Surface Defects: A Survey;IEEE Access;2023

4. Detail-semantic guide network based on spatial attention for surface defect detection with fewer samples;Applied Intelligence;2022-07-13

5. Special Issue: Novel Approaches for Nondestructive Testing and Evaluation;Applied Sciences;2022-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3