Accelerated System-Level Seismic Risk Assessment of Bridge Transportation Networks through Artificial Neural Network-Based Surrogate Model

Author:

Yoon Sungsik,Kim Jeongseob,Kim Minsun,Tak Hye-Young,Lee Young-JooORCID

Abstract

In this study, an artificial neural network (ANN)-based surrogate model is proposed to evaluate the system-level seismic risk of bridge transportation networks efficiently. To estimate the performance of a network, total system travel time (TSTT) was introduced as a performance index, and an ANN-based surrogate model was incorporated to evaluate a high-dimensional network with probabilistic seismic hazard analysis (PSHA) efficiently. To generate training data, the damage states of bridge components were considered as the input training data, and TSTT was selected as output data. An actual bridge transportation network in South Korea was considered as the target network, and the entire network map was reconstructed based on geographic information system data to demonstrate the proposed method. For numerical analysis, the training data were generated based on epicenter location history. By using the surrogate model, the network performance was estimated for various earthquake magnitudes at the trained epicenter with significantly-reduced computational time cost. In addition, 20 historical epicenters were adopted to confirm the robustness of the epicenter. Therefore, it was concluded that the proposed ANN-based surrogate model could be used as an alternative for efficient system-level seismic risk assessment of high-dimensional bridge transportation networks.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3