Detecting Suspicious Texts Using Machine Learning Techniques

Author:

Sharif OmarORCID,Hoque Mohammed MoshiulORCID,Kayes A. S. M.ORCID,Nowrozy RazaORCID,Sarker Iqbal H.ORCID

Abstract

Due to the substantial growth of internet users and its spontaneous access via electronic devices, the amount of electronic contents has been growing enormously in recent years through instant messaging, social networking posts, blogs, online portals and other digital platforms. Unfortunately, the misapplication of technologies has increased with this rapid growth of online content, which leads to the rise in suspicious activities. People misuse the web media to disseminate malicious activity, perform the illegal movement, abuse other people, and publicize suspicious contents on the web. The suspicious contents usually available in the form of text, audio, or video, whereas text contents have been used in most of the cases to perform suspicious activities. Thus, one of the most challenging issues for NLP researchers is to develop a system that can identify suspicious text efficiently from the specific contents. In this paper, a Machine Learning (ML)-based classification model is proposed (hereafter called STD) to classify Bengali text into non-suspicious and suspicious categories based on its original contents. A set of ML classifiers with various features has been used on our developed corpus, consisting of 7000 Bengali text documents where 5600 documents used for training and 1400 documents used for testing. The performance of the proposed system is compared with the human baseline and existing ML techniques. The SGD classifier ‘tf-idf’ with the combination of unigram and bigram features are used to achieve the highest accuracy of 84.57%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Identification of Suspicious Activities in Chat Logs using Support Vector Machine and Optimization with Genetic Algorithm;Khangura;Int. J. Res. Appl. Sci. Eng. Technol.,2017

2. 2019 Internet Crime Reporthttps://www.hsdl.org/?view&did=833980

3. Terrorism, the Internet and the Social Media Advantage: Exploring how terrorist organizations exploit aspects of the internet, social media and how these same platforms could be used to counter-violent extremism;Bertram;J. Deradicalization,2016

4. Supervised Learning Methods for Bangla Web Document Categorization

5. A Supervised Learning Approach for Authorship Attribution of Bengali Literary Texts

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3