Sine Cosine Algorithm Assisted FOPID Controller Design for Interval Systems Using Reduced-Order Modeling Ensuring Stability

Author:

Bokam Jagadish KumarORCID,Patnana NareshORCID,Varshney TarunORCID,Singh Vinay PratapORCID

Abstract

The focus of present research endeavor was to design a robust fractional-order proportional-integral-derivative (FOPID) controller with specified phase margin (PM) and gain cross over frequency (ωgc) through the reduced-order model for continuous interval systems. Currently, this investigation is two-fold: In the first part, a modified Routh approximation technique along with the matching Markov parameters (MPs) and time moments (TMs) are utilized to derive a stable reduced-order continuous interval plant (ROCIP) for a stable high-order continuous interval plant (HOCIP). Whereas in the second part, the FOPID controller is designed for ROCIP by considering PM and ωgc as the performance criteria. The FOPID controller parameters are tuned based on the frequency domain specifications using an advanced sine-cosine algorithm (SCA). SCA algorithm is used due to being simple in implementation and effective in performance. The proposed SCA-based FOPID controller is found to be robust and efficient. Thus, the designed FOPID controller is applied to HOCIP. The proposed controller design technique is elaborated by considering a single-input-single-output (SISO) test case. Validity and efficacy of the proposed technique is established based on the simulation results obtained. In addition, the designed FOPID controller retains the desired PM and ωgc when implemented on HOCIP. Further, the results proved the eminence of the proposed technique by showing that the designed controller is working effectively for ROCIP and HOCIP.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of reciprocal rank method for automatic generation control in two-area interconnected power system;Mathematics and Computers in Simulation;2024-11

2. Enhanced decentralised fractional-order control using tree seed optimisation and singular value analysis;International Journal of Systems Science;2024-02-02

3. Interval modelling based PID controller design for Cuk converter;AIP Conference Proceedings;2024

4. Design of FOPID controller for higher order MIMO systems using model order reduction;International Journal of System Assurance Engineering and Management;2023-06-12

5. Design of FOPID controller for Riverol-Pilipovik Water Treatment Plant Exploiting Jaya Algorithm;2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3);2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3