Efficient Approaches to the Mixture Distance Problem

Author:

Juan Justie Su-TzuORCID,Chen Yi-Ching,Lin Chen-Hui,Chen Shu-Chuan

Abstract

The ancestral mixture model, an important model building a hierarchical tree from high dimensional binary sequences, was proposed by Chen and Lindsay in 2006. As a phylogenetic tree (or evolutionary tree), a mixture tree created from ancestral mixture models, involves the inferred evolutionary relationships among various biological species. Moreover, it contains the information of time when the species mutates. The tree comparison metric, an essential issue in bioinformatics, is used to measure the similarity between trees. To our knowledge, however, the approach to the comparison between two mixture trees is still unknown. In this paper, we propose a new metric named the mixture distance metric, to measure the similarity of two mixture trees. It uniquely considers the factor of evolutionary times between trees. If we convert the mixture tree that contains the information of mutation time of each internal node into a weighted tree, the mixture distance metric is very close to the weighted path difference distance metric. Since the converted mixture tree forms a special weighted tree, we were able to design a more efficient algorithm to calculate this new metric. Therefore, we developed two algorithms to compute the mixture distance between two mixture trees. One requires O(n2) and the other requires O(nh1h2) computational time with O(n) preprocessing time, where n denotes the number of leaves in the two mixture trees, and h1 and h2 denote the heights of these two trees.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference23 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3