Clustering of Floating Tracers in a Random Velocity Field Modulated by an Ellipsoidal Vortex Flow

Author:

Koshel Konstantin1ORCID,Stepanov Dmitry1ORCID,Kuznetsova Nata1,Ryzhov Evgeny1ORCID

Affiliation:

1. V.I.Il’ichev Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya St., 690041 Vladivostok, Russia

Abstract

The influence of a background vortex flow on the clustering of floating tracers is addressed. The vortex flow considered is induced by an ellipsoidal vortex evolving in a deformation. The system exhibits various vortex motion regimes: (1) a steady state, (2) oscillation and (3) rotation of the ellipsoidal vortex core. The latter two induce an unsteady velocity field for the tracer, thus leading to irregular (chaotic) tracer motion. Superimposing a stochastic divergent velocity field onto the deterministic vortex flow allows us to observe significantly different tracer evolution. An ellipsoidal vortex has ellipsoidal symmetry, and the tracer’s trajectories exhibit the same symmetry inside the vortex. Outside the vortex, the external deformation flow symmetry dominates. Diffusion scattering and chaotic advection give tracers the opportunity to leave the region of ellipsoidal symmetry and form a picture of shear flow symmetry. We use the method of characteristics to integrate the floating tracer density evolution equation and the Euler Ito scheme for obtaining the floating tracer trajectories with a random velocity field. The cluster area and cluster mass from the statistical topography are used as the quantitative diagnostics of a floating tracer’s clustering. For the case of a steady ellipsoidal vortex embedded into the deformation flow with a random velocity field component, we found that the clustering characteristics were weakened by the steady vortex. For the cases of an unsteady ellipsoidal vortex, we observed clustering in the floating tracer density field if the contribution of the divergent component was greater than or equal to that of the rotational (nondivergent) component. Even when the initial floating tracer patch was set on the boundary of the oscillating ellipsoidal vortex, we observed the formation of clusters. In the case of a rotating ellipsoidal vortex, we also observed pronounced clustering. Thus, we argue that unsteady ellipsoidal vortex regimes (oscillation and rotation), which induce chaotic motion of the nearby passive tracer’s trajectories, are still conducive to clustering of floating tracers observed in the density field, despite the intense deformation introduced by strain and shear.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference23 articles.

1. Okubo, A. (1980). Biomathematics, Springer.

2. McComb, W.D. (1990). The Physics of Fluid Turbulence, Clarendon Press.

3. Ocean processes underlying surface clustering;Jacobs;J. Geophys. Res. Ocean.,2016

4. The imbedding method in statistical boundary-value wave problems;Klyatskin;Book Series: Progress in Optics,1994

5. Klyatskin, V.I. (2015). Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3