On Symplectic Self-Adjointness of Hamiltonian Operator Matrices

Author:

Wu Xiaohong1,Huang Junjie2,Buhe Eerdun1

Affiliation:

1. School of Mathematical Sciences, Hohhot Minzu College, Hohhot 010051, China

2. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

Abstract

The symmetry of the spectrum and the completeness of the eigenfunction system of the Hamiltonian operator matrix have important applications in the symplectic Fourier expansion method in elasticity. However, the symplectic self-adjointness of Hamiltonian operator matrices is important to the characterization of the symmetry of the point spectrum. Therefore, in this paper, the symplectic self-adjointness of infinite dimensional Hamiltonian operators is studied by using the spectral method of unbounded block operator matrices, and some sufficient conditions of the symplectic self-adjointness of infinite dimensional Hamiltonian operators are obtained. In addition, the necessary and sufficient conditions are also investigated for some special infinite dimensional Hamiltonian operators.

Funder

Scientific Research Project of the Higher Education Institutions of the Autonomous Region

Doctoral Project of Hohhot Minzu College

Natural Science Foundation of China

Natural Science Foundation Inner Mongolia of China

Youth Innovative Talents Training Program of Inner Mongolia

National Universities’ Huang-Danian Style Teacher Team

Inner Mongolia “Grassland Talent Engineering” Industrial Innovation Talent Team

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference13 articles.

1. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator;Chen;Sci. China Ser. Math.,2009

2. Sun, J., and Wang, Z. (2005). Spectral Analysis of Linear Operators, Science Press. [1st ed.].

3. Wang, Z. (1995). A New Systematic Method in Elasticity Theory, Dalian University of Technology Press. [1st ed.].

4. Structure of the spectrum of infinite dimensional Hamiltonian operators;Chen;Sci. China Ser. Math.,2008

5. Wang, H., and Chen, A. (2011). Eigenvalue Problems of Infinite Dimensional Hamilton Operators, Inner Mongolia University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3