Numerical Modeling of the Interaction of Dark Atoms with Nuclei to Solve the Problem of Direct Dark Matter Search

Author:

Bikbaev Timur1,Khlopov Maxim123ORCID,Mayorov Andrey1ORCID

Affiliation:

1. Institute of Nuclear Physics and Engineering, National Research Nuclear University MEPhI, 115409 Moscow, Russia

2. Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov-on-Don, Russia

3. Virtual Institute of Astroparticle Physics, 75018 Paris, France

Abstract

The puzzle of the direct dark matter search can be resolved by examining the concept of «dark atoms», which consist of hypothetical stable lepton-like particles with a charge of −2n, where n is any natural number, bound to n nuclei of primordial helium. These «dark atoms», known as «XHe» (X-helium) atoms, remain undiscovered in experiments due to their neutral atom-like states. In this model, the positive results of the DAMA/NaI and DAMA/LIBRA experiments could be explained by the annual modulation of radiative capture of XHe atoms engaging in low-energy bound states with sodium nuclei. This specific phenomenon does not occur under the conditions of other underground experiments. The proposed solution to this puzzle involves establishing the existence of a low-energy bound state of «dark atoms» and nuclei while also considering the self-consistent influence of nuclear attraction and Coulomb repulsion. Resolving this complex issue, which has remained unsolved for the past 17 years, necessitates a systematic approach. To tackle this problem, numerical modeling is employed to uncover the fundamental processes behind the interaction of «dark atoms» with nuclei. To comprehend the essence of XHe’s interaction with baryonic matter nuclei, a classical model is employed wherein quantum physics and nuclear size effects are progressively incorporated. A numerical model describing the interaction between XHe «dark atoms» and nuclei is developed through the continuous inclusion of realistic features of quantum mechanics in the initial classical three-body problem involving the X-particle, the helium nucleus, and the target nucleus. This approach yields a comprehensive numerical model that encompasses nuclear attraction and electromagnetic interaction between the «dark atom» and nuclei. Finally, this model aids in supporting the interpretation of the results obtained from direct underground dark matter experiments through the lens of the «dark atom» hypothesis.

Funder

Russian Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

1. Fundamental particle structure in the cosmological dark matter;Khlopov;Int. J. Mod. Phys. A,2013

2. Khlopov, M. (2016). Cosmological Reflection of Particle Symmetry. Symmetry, 8.

3. Particle dark matter: Evidence, candidates and constraints;Bertone;Phys. Rep.,2005

4. Dark matter reflection of particle symmetry;Khlopov;Mod. Phys. Lett. A,2017

5. Scott, P. (2011). Searches for Particle Dark Matter: An Introduction. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3