Two Improved Constraint-Solving Algorithms Based on lmaxRPC3rm

Author:

Pan Xirui12ORCID,Cheng Zhuyuan12,Zhang Yonggang12ORCID

Affiliation:

1. College of Computer Science and Technology, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China

Abstract

The Constraint Satisfaction Problem (CSP) is a significant research area in artificial intelligence, and includes a large number of symmetric or asymmetric structures. A backtracking search combined with constraint propagation is considered to be the best CSP-solving algorithm, and the consistency algorithm is the main algorithm used in the process of constraint propagation, which is the key factor in constraint-solving efficiency. Max-restricted path consistency (maxRPC) is a well-known and efficient consistency algorithm, whereas the lmaxRPC3rm algorithm is a classic lightweight algorithm for maxRPC. In this paper, we leverage the properties of symmetry to devise an improved pruning strategy aimed at efficiently diminishing the problem’s search space, thus enhancing the overall solving efficiency. Firstly, we propose the maxRPC3sim algorithm, which abandons the two complex data structures used by lmaxRPC3rm. We can render the algorithm to be more concise and competitive compared to the original algorithm while ensuring that it maintains the same average performance. Secondly, inspired by the RCP3 algorithm, we propose the maxRPC3simR algorithm, which uses the idea of residual support to cut down the redundant operation of the lmaxRPC3rm algorithm. Finally, combining the domain/weighted degree (dom/wdeg) heuristic with the activity-based search (ABS) heuristic, a new variable ordering heuristic, ADW, is proposed. Our heuristic prioritizes the selection of variables with symmetry for pruning, further enhancing the algorithm’s pruning capabilities. Experiments were conducted on both random and structural problems separately. The results indicate that our two algorithms generally outperform other algorithms in terms of performance on both problem classes. Moreover, the new heuristic algorithm demonstrates enhanced robustness across different problem types when compared to various existing algorithms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province, China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3