Probing a Hybrid Channel for the Dynamics of Non-Local Features

Author:

Rahman Atta ur1ORCID,Yang Macheng1ORCID,Zangi Sultan Mahmood23ORCID,Qiao Congfeng14ORCID

Affiliation:

1. School of Physical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China

2. Department of Physics, University of Okara, Okara 56300, Pakistan

3. School of Physics and Astronomy, Yunnan University, Kunming 650500, China

4. CAS Center for Excellence in Particle Physics, Beijing 100049, China

Abstract

Effective information transmission is a central element in quantum information protocols, but the quest for optimal efficiency in channels with symmetrical characteristics remains a prominent challenge in quantum information science. In light of this challenge, we introduce a hybrid channel that encompasses thermal, magnetic, and local components, each simultaneously endowed with characteristics that enhance and diminish quantum correlations. To investigate the symmetry of this hybrid channel, we explored the quantum correlations of a simple two-qubit Heisenberg spin state, quantified using measures such as negativity, ℓ1-norm coherence, entropic uncertainty, and entropy functions. Our findings revealed that the hybrid channel can be adeptly tailored to preserve quantum correlations, surpassing the capabilities of its individual components. We also identified optimal parameterizations to attain maximum entanglement from mixed entangled/separable states, even in the presence of local dephasing. Notably, various parameters and quantum features, including non-Markovianity, exhibited distinct behaviors in the context of this hybrid channel. Ultimately, we discuss potential experimental applications of this configuration.

Funder

National Natural Science Foundation of China

University of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3