Margined Horn-Shaped Air Chamber for Body-Conduction Microphone

Author:

Muramatsu Shun1ORCID,Kohata Yuki2,Hira Emi3,Momoi Yasuyuki3,Yamamoto Michitaka12ORCID,Takamatsu Seiichi12ORCID,Itoh Toshihiro12

Affiliation:

1. Department of Precision Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan

2. Department of Precision Engineering, Faculty of Engineering, The University of Tokyo, Tokyo 113-8656, Japan

3. Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan

Abstract

The sound amplification ratios of sealed air chambers with different shapes were quantitatively compared to design a body-conduction microphone to measure animal scratching sounds. Recently, quantitative monitoring of scratching intensity in dogs has been required. We have already developed a collar with a body-conduction microphone to measure body-conducted scratching sounds. However, the air chamber, one of the components of the body-conduction microphone, has not been appropriately designed. This study compared the amplification ratios of air chambers with different shapes through numerical analysis and experiments. According to the results, the horn-shaped air chamber achieved the highest amplification performance, at least for sound frequencies below 3 kHz. The simulated amplification ratio of the horn-shaped air chamber with a 1 mm height and a 15 mm diameter was 52.5 dB. The deformation of the bottom of the air chamber affected the amplification ratio. Adjusting the margin of the margined horn shape could maintain its amplification ratio at any pressing force. The simulated and experimental amplification ratios of the margined horn-shaped air chamber were 53.4 dB and 19.4 dB, respectively.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3