Shaping Perpendicular Magnetic Anisotropy of Co2MnGa Heusler Alloy Using Ion Irradiation for Magnetic Sensor Applications

Author:

Mahendra Anmol123ORCID,Murmu Peter P.2,Acharya Susant Kumar13,Islam Atif13ORCID,Fiedler Holger2ORCID,Gupta Prasanth23,Granville Simon13ORCID,Kennedy John23ORCID

Affiliation:

1. Robinson Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand

2. National Isotope Centre, GNS Science, Lower Hutt 5010, New Zealand

3. The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand

Abstract

Magnetic sensors are key elements in many industrial, security, military, and biomedical applications. Heusler alloys are promising materials for magnetic sensor applications due to their high spin polarization and tunable magnetic properties. The dynamic field range of magnetic sensors is strongly related to the perpendicular magnetic anisotropy (PMA). By tuning the PMA, it is possible to modify the sensing direction, sensitivity and even the accuracy of the magnetic sensors. Here, we report the tuning of PMA in a Co2MnGa Heusler alloy film via argon (Ar) ion irradiation. MgO/Co2MnGa/Pd films with an initial PMA were irradiated with 30 keV 40Ar+ ions with fluences (ions·cm−2) between 1 × 1013 and 1 × 1015 Ar·cm−2, which corresponds to displacement per atom values between 0.17 and 17, estimated from Monte-Carlo-based simulations. The magneto optical and magnetization results showed that the effective anisotropy energy (Keff) decreased from ~153 kJ·m−3 for the un-irradiated film to ~14 kJ·m−3 for the 1 × 1014 Ar·cm−2 irradiated film. The reduced Keff and PMA are attributed to ion-irradiation-induced interface intermixing that decreased the interfacial anisotropy. These results demonstrate that ion irradiation is a promising technique for shaping the PMA of Co2MnGa Heusler alloy for magnetic sensor applications.

Funder

Ministry of Business, Innovation and Employment

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3