Human ApoA-I Overexpression Enhances Macrophage-Specific Reverse Cholesterol Transport but Fails to Prevent Inherited Diabesity in Mice

Author:

Méndez-Lara Karen,Farré Núria,Santos David,Rivas-Urbina Andrea,Metso Jari,Sánchez-Quesada José,Llorente-Cortes Vicenta,Errico Teresa,Lerma Enrique,Jauhiainen Matti,Martín-Campos Jesús,Alonso Núria,Escolà-Gil Joan,Blanco-Vaca Francisco,Julve JosepORCID

Abstract

Human apolipoprotein A-I (hApoA-I) overexpression improves high-density lipoprotein (HDL) function and the metabolic complications of obesity. We used a mouse model of diabesity, the db/db mouse, to examine the effects of hApoA-I on the two main functional properties of HDL, i.e., macrophage-specific reverse cholesterol transport (m-RCT) in vivo and the antioxidant potential, as well as the phenotypic features of obesity. HApoA-I transgenic (hA-I) mice were bred with nonobese control (db/+) mice to generate hApoA-I-overexpressing db/+ offspring, which were subsequently bred to obtain hA-I-db/db mice. Overexpression of hApoA-I significantly increased weight gain and the incidence of fatty liver in db/db mice. Weight gain was mainly explained by the increased caloric intake of hA-I-db/db mice (>1.2-fold). Overexpression of hApoA-I also produced a mixed type of dyslipidemia in db/db mice. Despite these deleterious effects, the overexpression of hApoA-I partially restored m-RCT in db/db mice to levels similar to nonobese control mice. Moreover, HDL from hA-I-db/db mice also enhanced the protection against low-density lipoprotein (LDL) oxidation compared with HDL from db/db mice. In conclusion, overexpression of hApoA-I in db/db mice enhanced two main anti-atherogenic HDL properties while exacerbating weight gain and the fatty liver phenotype. These adverse metabolic side-effects were also observed in obese mice subjected to long-term HDL-based therapies in independent studies and might raise concerns regarding the use of hApoA-I-mediated therapy in obese humans.

Funder

Agència de Gestió d’Ajuts Universitaris i de Recerca

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3