An Algorithm to Retrieve Total Precipitable Water Vapor in the Atmosphere from FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) Data

Author:

Abbasi BilawalORCID,Qin Zhihao,Du Wenhui,Fan Jinlong,Zhao Chunliang,Hang Qiuyan,Zhao Shuhe,Li Shifeng

Abstract

The atmosphere has substantial effects on optical remote sensing imagery of the Earth’s surface from space. These effects come through the functioning of atmospheric particles on the radiometric transfer from the Earth’s surface through the atmosphere to the sensor in space. Precipitable water vapor (PWV), CO2, ozone, and aerosol in the atmosphere are very important among the particles through their functioning. This study presented an algorithm to retrieve total PWV from the Chinese second-generation polar-orbiting meteorological satellite FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) data, which have three near-infrared (NIR) water vapor absorbing channels, i.e., channel 16, 17, and 18. The algorithm was improved from the radiance ratio technique initially developed for Moderate-Resolution Imaging Spectroradiometer (MODIS) data. MODTRAN 5 was used to simulate the process of radiant transfer from the ground surfaces to the sensor at various atmospheric conditions for estimation of the coefficients of ratio technique, which was achieved through statistical regression analysis between the simulated radiance and transmittance values for FY-3D MERSI-2 NIR channels. The algorithm was then constructed as a linear combination of the three-water vapor absorbing channels of FY-3D MERSI-2. Measurements from two ground-based reference datasets were used to validate the algorithm: the sun photometer measurements of Aerosol Robotic Network (AERONET) and the microwave radiometer measurements of Energy’s Atmospheric Radiation Measurement Program (ARMP). The validation results showed that the algorithm performs very well when compared with the ground-based reference datasets. The estimated PWV values come with root mean square error (RMSE) of 0.28 g/cm2 for the ARMP and 0.26 g/cm2 for the AERONET datasets, with bias of 0.072 g/cm2 and 0.096 g/cm2 for the two reference datasets, respectively. The accuracy of the proposed algorithm revealed a better consistency with ground-based reference datasets. Thus, the proposed algorithm could be used as an alternative to retrieve PWV from FY-3D MERSI-2 data for various remote sensing applications such as agricultural monitoring, climate change, hydrologic cycle, and so on at various regional and global scales.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3