The Influence of Ink Chemistry on the Microstructure Evolution and GHz RF Response of Printed Ag Transmission Lines

Author:

Summers Jason M.1ORCID,Sakri Shambhavi1,Chakma Nishako2ORCID,Luyen Hung2,Bujanda Andres3,Parker Thomas3ORCID,Tsang Harvey3ORCID,Shepherd Nigel D.1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA

2. Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA

3. DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD 21005, USA

Abstract

High-frequency transmission is limited to the skin depth in metals. Because poor conductivity cannot be compensated for by increasing the conductor thickness as with DC, optimal transport properties are prerequisites for radio frequency (RF) use. Structural and chemical analyses of transmission lines printed using a traditional ink consisting of Ag nanoflakes in a dispersing phase revealed that optimized thermal treatments yielded thorough burnout of the binder, significant grain growth, elimination of the pore volume, and electrical responses that were comparable to values obtained for thermally evaporated, fully dense Ag controls. Specifically, a low DC resistivity of 2.3 μΩ·cm (1.4× bulk Ag) and RF transmission coefficients of 0.87 and 0.75 at 5 GHz and 10 GHz, respectively, were measured in the nanoflake Ag prints. Conversely, in transmission lines printed from a metal-organic decomposition ink, residual chemical contamination impeded diffusion and densification, yielding greater porosity, small grains that are pinned, and a degraded RF response. Reasonably good porosity approximations were obtained from a model based on percolation theory. The results indicate that contaminants at interfaces and pore surfaces impede diffusion, pore elimination, and full densification, and further, alter carrier dynamics and degrade RF response.

Funder

Office of Naval Research

Army Research Laboratory

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3