Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate

Author:

Chen Mengwen1ORCID,Wang Chenyu1ORCID,Tian Xiao-Hui1ORCID,Tang Jie2,Gu Xiaowen2,Qian Guang2,Jia Kunpeng1,Liu Hua-Ying1ORCID,Yan Zhong34ORCID,Ye Zhilin4,Yin Zhijun4,Zhu Shi-Ning1,Xie Zhenda1

Affiliation:

1. National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2. National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing Electronic Devices Institute, Nanjing 210016, China

3. School of Integrated Circuits, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. NanZhi Institute of Advanced Optoelectronic Integration Technology Co., Ltd., Nanjing 210018, China

Abstract

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 μm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Leading-Edge Technology Program of Jiangsu Natural Science Foundation

Zhangjiang Laboratory

Jiangsu Funding Program for Excellent Postdoctoral Talent

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3