The Use of Lightweight Aggregates in Geopolymeric Mortars: The Effect of Liquid Absorption on the Physical/Mechanical Properties of the Mortar

Author:

Vasanelli Emilia1ORCID,Calò Silvia2ORCID,Cascardi Alessio3ORCID,Aiello Maria Antonietta2ORCID

Affiliation:

1. CNR-ISPC (National Research Council—Institute of Heritage Science), University Campus, Prov. le Lecce Monteroni, 73100 Lecce, Italy

2. Department of Innovation Engineering, University of Salento, University Campus, Prov. le Lecce Monteroni, 73100 Lecce, Italy

3. Department of Civil Engineering, University of Calabria, Via P. Bucci, 87036 Rende, Italy

Abstract

Geopolymers have been proposed as a green alternative to Portland cement with lowered carbon footprints. In this work, a geopolymeric mortar obtained using waste materials is studied. Fly ash, a waste generated by coal combustion, is used as one of the precursors, and waste glass as lightweight aggregates (LWAs) to improve the thermal performance of the mortar. The experimental study investigates the effect of varying the alkali activating solution (AAS) amount on the workability, compressive strength, and thermal conductivity of the mortar. Indeed, AAS represents the most expensive component in geopolymer production and is the highest contributor to the environmental footprint of these materials. This research starts by observing that LWA absorbs part of the activating solution during mixing, suggesting that only a portion of the solution effectively causes the geopolymerization reactions, the remaining part wetting the aggregates. Three mixes were investigated to clarify these aspects: a reference mix with a solution content calibrated to have a plastic consistency and two others with the activating solution reduced by the amount absorbed by aggregates. In these cases, the reduced workability was solved by adding the aggregates in a saturated surface dry state in one mix and free water in the other. The experimental results evidenced that free water addiction in place of a certain amount of the solution may be an efficient way to improve thermal performance without compromising the resistance of the mortar. The maximum compressive strength reached by the mortars was about 10 MPa at 48 days, a value in line with those of repair mortars. Another finding of the experimental research is that UPV was used to follow the curing stages of materials. Indeed, the instrument was sensitive to microstructural changes in the mortars with time. The field of reference of the research is the rehabilitation of existing buildings, as the geopolymeric mortars were designed for thermal and structural retrofitting.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3