Abstract
Fundamentally different responses of a LiTaO 3 thin film detector are observed when it is subjected to short microwave pulses as the pulse intensity is altered over a wide range. We start from weak microwave pulses which lead to only trivial pyroelectric peak response. However, when the microwave pulses become intense, the normally expected pyroelectric signal seems to be suppressed and the sign of the voltage signal can even be completely changed. Analysis indicates that while the traditional pyroelectric model, which is a linear model and works fine for our data in the small regime, it does not work anymore in the large signal regime. Since the small-signal model is the key foundation of electromagnetic-wave sensors based on pyroelectric effects, such as pyroelectric infrared detecters, the observation in this work suggests that one should be cautious when using these devices in intense fields. In addition, the evolution of detector signal with respect to excitation strength suggests that the main polarisation process is changed in the large signal regime. This is of fundamental importance to the understanding on how crystalline solids interact with intense microwaves. Possible causes of the nonlinear behaviour is discussed.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献